Sintered Samarium Cobalt (SmCo) was the first of the Rare Earth family of permar magnet materials. Developed in the 1960's, it revolutionised magnetic design offering substantial improvements in energy product to that of other materials at the time, such as Alnico and Ceramic Ferrite.

There are two main groups of grades available in SmCo; 1:5 and 2:17. The 2:17 gr SmCo grades offer the highest energy product (BHmax), ranging from 22 MGOe to MGOe. SmCo not only offers grades that can rival Neodymium-Iron-Boron (NdFeB performance but has the added advantage of excellent temperature and correspond

resistance. Its maximum working temperature is up to 350 and displays low levels of losses during its temperature climb.

SmCo is considered to be the magnet material of choice for many engineers looking for a material that offers high energy in harsh challenging environments. It is often used in high temperature motors and drives, marine application, Oil and Gas, Aerospace, Med and Vacuum industries.

Magnet Sales and Service offers a wide range of standard sizes from stock and offers rapid prototyping for bespoke components a assembly work.

Design Considerations

SmCo

The working environment is often the determining reason for choosing SmCo. Although it is more costly than other high materials such as NdFeB, it is able to work in some very difficult environments.

SmCo 2:17 has excellent resistance to corrosion, which allows it to work in areas of high humidity, often without coating. SmCo 2:1 ability to withstand the influences of temperature is its greatest strength and the level of temperature losses compared to NdFeB is far less, therefore SmCo can operate continuously and at a greater range of temperatures.

SmCo downfall is it its brittleness, it is very prone to chipping and must not be used as a structural component. SmCo also requires extremely high fields to magnetise it, which can influence size and shape of component.

Summary

- Excellent resistance to corrosion
- High temperature performance
- · High resistance to demagnetisation
- Standard stock sizes available
- Rapid Prototyping and assembly available

Grade and Magnetic Characteristi SmCo 2:17

2:17	Br		Hci	(BH)max	Density ³	Max working ⁰C
22/25			25			
24/25	10.3+/-0.3	9.2	25			
26/16	10.8+/-0.3	8.5	14	25	8.4	300
28/16	11.0 +/-0.3	9.8	13	27	8.4	300
30/12	11.3 +/-0.3	8.0	10	29	8.4	
32/12	11.5+/-0.3	8.0	10	31	8.4	300

* = MSS Standard 2:17 grade for raw material

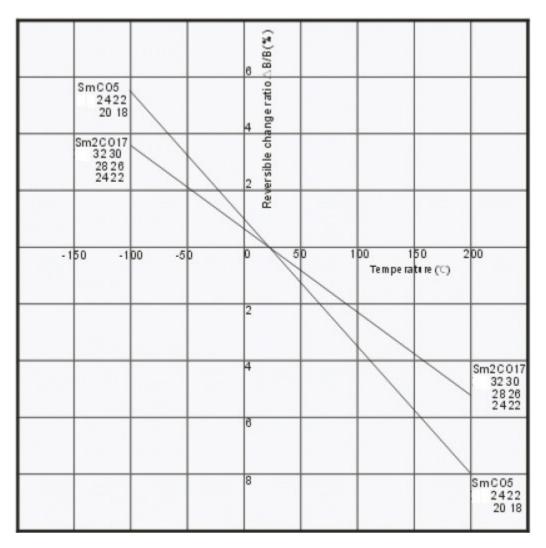
SmCo 1:5

1:5	Br		Hci	(BH)max	Density ³	Max working ⁰C
18/18			16			
20/18			16			
22/15			14			
	10.0 +/-0.3	9.2		23	8.3	250

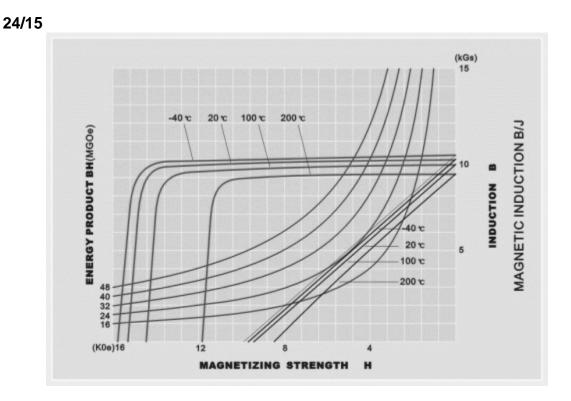
Physical and Mechanical Characteristics

Composition			SmCo2:17 32 30 28 26 24 22	SmCo1:5 24 22 20 18			
Physical characteristics							
Curie	0C		800 to 850	700 to 750			
	(K)		(1073 to 1123)	(973 to 1023)			
		1ºC	8×10 ⁶	6×10 ⁶			
Thermal	C//	(1K)	(8×10 ⁶)	(6×10 ⁶)			
	с	1ºC	11×10 ⁶	13×10 ⁶			
		(1K)	(11×10°)	(13×10°)			
Thermal	Kcal/mh ^p C		10	11			
	(W/mK)		(12)	(13)			
Onesifia hast	Cal/g ^o C		8×10 ²	9×10 ²			
Specific heat	(J/kgK)		(335)	(377)			
Specific	- cm		8.6×10⁵	5.3×10⁵			
Mechanical	chara	cteris	tics				
Deflection	Kg/mm²		15	18			
-	(N/m ²)		(1.5×10)	(1.8×10)			
Compressive	Kg/mm²		82	102			
	(N/m²)		(8×10 ^s)	(10×1ੴ)			
Topoilo otros sth	Kg/mm²		3.6	4.1			
Tensile strength	(N/m²)		(3.5×10)	(4×10 ⁷)			
Young's	Kg/mm²		1.2×10	1.6×10			
-	(N/m²)		(1.2×10¹)	(1.6×10 ¹)			
Vickers hardness			500 to 600	450 to 500			

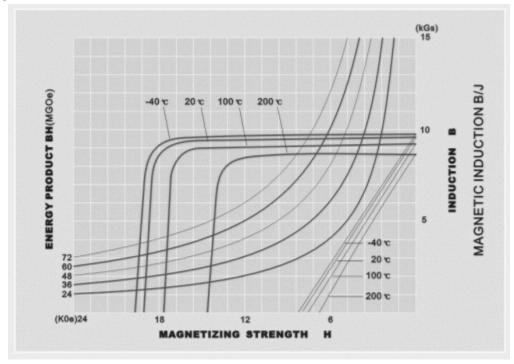
Saturation Magnetisation

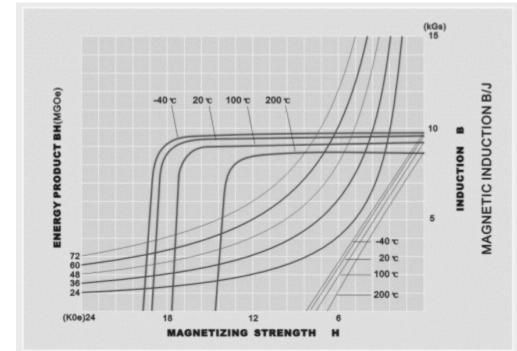

Material	Magnetic Field Strength H(min) KA/m		
SmCo 1:5	2400 (Hcj<1600)	4000 (Hcj>1600)	
SmCo 2:17	4000 (Hcj<1000)	8000 (Hcj>1000)	

Temperature Characteristics

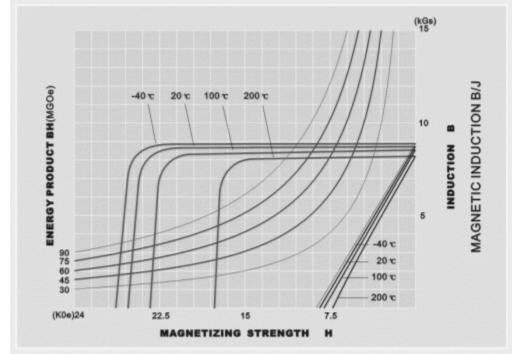

Reversible Temperature Coefficient at -900to 200C

Temperature	-100°C to 20C	20ºC to 100C	100ºC to 200C
	-0.045 % PC	-0.045 % PC	-0.050 % ^p C
	-0.030% PC	-0.030% PC	-0.035% / ^o C

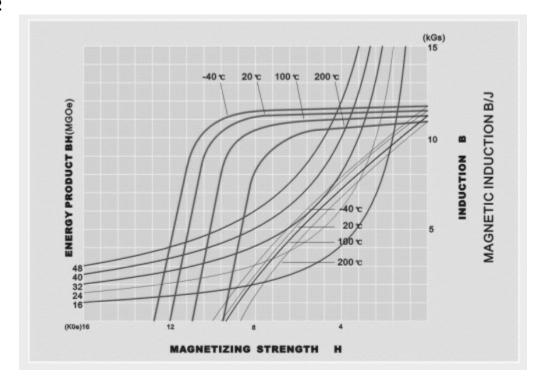

Reversible Temperature Change

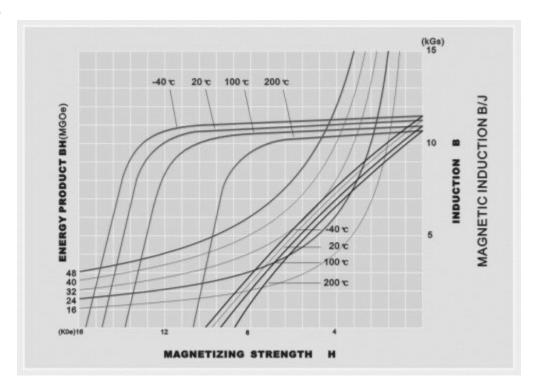


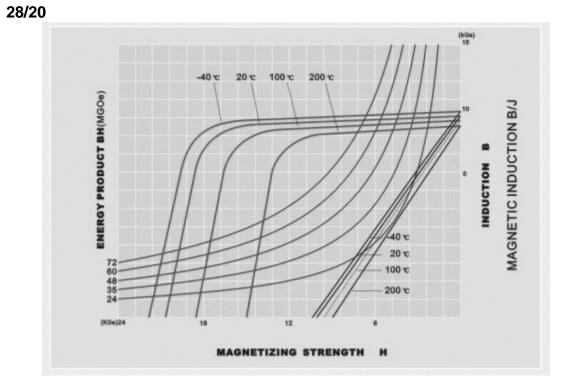
Demagnetisation Curve - SmCo 1:5 Grades



22/20




20/20



Demagnetisation Curve - SmCo 2:17 Grades

32/12

30/15

SMCODS002